Deconvolution in nonparametric statistics

نویسندگان

  • Kris De Brabanter
  • Bart De Moor
چکیده

In this tutorial paper we give an overview of deconvolution problems in nonparametric statistics. First, we consider the problem of density estimation given a contaminated sample. We illustrate that the classical Rosenblatt-Parzen kernel density estimator is unable to capture the full shape of the density while the presented method experiences almost no problems. Second, we use the previous estimator in a nonparametric regression framework with errors-in-variables.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effects of error magnitude and bandwidth selection for deconvolution with unknown error distribution.

The error distribution is generally unknown in deconvolution problems with real applications. A separate independent experiment is thus often conducted to collect the additional noise data in those studies. In this paper, we study the nonparametric deconvolution estimation from a contaminated sample coupled with an additional noise sample. A ridge-based kernel deconvolution estimator is propose...

متن کامل

Nonparametric density deconvolution by weighted kernel estimators

JSM, Denver, 4 August 2008 – 3 / 23 We observe a univariate random sample Y1, . . . , Yn from a density g, where Yi = Xi + Zi (i = 1, . . . , n). Here X1, . . . , Xn are independent and identically distributed with unknown continuous density f , and the measurement errors Z1, . . . , Zn form a random sample from the continuous density η which we assume to be known. Our goal is to obtain a nonpa...

متن کامل

Nonparametric Estimation in a Stochastic Volatility Model

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to financial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situatio...

متن کامل

Deconvolution with Supersmooth Distributions

The desire to recover the unknown density when data are contaminated with errors leads to nonparametric deconvolution problems. Optimal global rates of convergence are found under the weighted Lp-loss (1 $ p $ 00). It appears that the optimal rates of convergence are extremely slow for supersmooth error distributions. To overcome the difficulty, we examine how large the noise level can be for d...

متن کامل

Nonparametric deconvolution for decreasing kernels

A selection of these reports is available in PostScript form at the Faculty's anonymous ftp-Abstract A new nonparametric estimation procedure is introduced for a class of deconvolution problems where the convolution kernel is decreasing on 0; 1). The estimator is shown to be consistent and its cube root asymptotic distribution theory is established.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012